Polynomials Exercise 2.1 and 2.2

Welcome to Gurukul with Arya Gautam





Polynomials

Mathematics Class Tenth


  • Exercise 2.1 and 2.2

     

What is a Polynomial? NCERT Exercise 2.1 and 2.2

An expression which consists variables and coefficient and non-negative integer components involving operations of addition, subtraction and multiplication only is called POLYNOMIAL.

Example:

x2+4x-7x3+2x2y-y+13x, 5, etc.

On the other hand x-2y1x2x+1x, etc. are not polynomials. Because a polynomial cannot have

(i) an exponent with negative sign , such as -2-5, etc.

(ii) no any term in a polynomial can be dividing by a variable, such as 1x

(iii) an exponent with fractional exponent, such as x as it is written as x12

A Polynomial can have constants, variables, and exponents.

Examples of

Constants: 3,2,-2,14 etc.

Variables: x,yx,z,abc, etc.

Exponents: 0,1,2,3,4, etc.

Degree of Polynomial

If p(x) is a polynomial in x, the highest power of x in p(x) is called the DEGREE OF THE POLYNOMIAL p(x).

Linear Polynomial

Let a polynomial 4x+2.

Variable x of this polynomial has power equal to one (1), thus degree of this polynomial is one (1). Or this is called the Polynomial of degree 1.

A polynomial of degree 1 is known as LINEAR POLYNOMIAL also.

Quadratic Polynomial

Let a polynomial x2+x+2.

Variable x of this polynomial has highest power equal to 2. Thus, this polynomial, variable of which has highest power equal to 2 is called Polynomial of 2 degree.

A polynomial of 2 degree is known as QUADRATIC POLYNOMIAL also.

Cubic Polynomial

A polynomial of degree 3 is called a CUBIC POLYNOMIAL.

Example:

x3+2x2-x+12-x32x, etc.

The most general form of a cubic polynomial is

ax3+bx2+cx+d where a,b,c,d are real numbers and a0.

Value of Polynomial

If p(x) is a polynomial in x, and if k is any real number, then the value obtained by preplacing x by k in p(x), is called the value of p(x) at x=k, and is denoted by p(k).

Example:

Let a polynomial p(x)=x2-3x-4

By putting x=2, we get

p(2)=22-3×2-4=-6

Here, the value of 2 is called the value of polynomial p(x) at x=2.

Zeroes of a Polynomial

A real number k is said to be a zero of a polynomial p(x), if p(k)=0.

Example:

Let a polynomial p(x)=x2-3x-4

By putting x=-1, we get

p(-1)=(-1)2-3(-1)-4

p(-1)=1+3-4=0

By putting x=4 in the polynomial in example, we get

p(4)=42- (3×4)-4

p(4)=16-12-4=0

Since, here p(-1)=0 and p(4)=0

Thus, -1 and 4 are called the zeros of the quadratic polynomial x2-3x-4.

Zeroes of a Linear Polynomial

If k is a zero of p(x)=ax+b, then

p(k)=ak+b=0

i.e. k=-ba

Thus, zero of a LINEAR POLYNOMIAL ax+b is equal to -ba

=-Constant termCoefficient of x

Thus, zero of a LINEAR POLYNOMIAL is related to its coefficients.

The zeroes of a polynomial p(x) are precisely the x- coordinates of the points, where the graph of y=p(x) intersects the x-axis.

NCERT Exercise 2.1 Solution Class ten Mathematics

Question: 1. The graphs of y=p(x) are given in the figure below, for some polynomials p(x). Find the number of zeros of p(x), in each case.

(i) 10 math polynomials ncert exercise 2.1

Answer: Since line of graph does not intersect x-axis, thus number of zeros = 0

(ii) 10 math polynomials ncert exercise 2.1_2

Answer: Since line of graph  intersects x-axis only once, thus number of zeros = 1

(iii) 10 math polynomials ncert exercise 2.1_3

Answer: Since line of graph intersects x-axis thrice, thus number of zeros = 3

(iv) 10 math polynomials ncert exercise 2.1_4

Answer: Since line of graph intersects x-axis twice, thus number of zeros = 2

(v) 10 math polynomials ncert exercise 2.1_6

Answer: Since line of graph intersects x-axis three times, thus number of zeros = 3

(vi) 10 math polynomials ncert exercise 2.1_5

Answer: Since line of graph intersects x-axis four times, thus number of zeros = 4

Relationship between Zeroes and Coefficients of a Polynomial

If α and β are the zeroes of the quadratic polynomial p(x)=ax2+bx+c, wherea0, then x-α and x-β are the factors of p(x).

Therefore,

ax2+bx+c =k(x-α)(x-β), where k is constant.

=k[x2(α+β)x+αβ]

=kx2-k(α+β)x+kαβ

Now, by comparing the coefficients of x2,x and constant terms on both sides, we get

a=k -------(i)

b=-k(α+β) ----------(ii)

c=kαβ ------(iii)

Now,

∵ b=-k(α+β)

α+β=-bk

After replacing the value of k=a from equation (i) we get

α+β=-ba -------(iv)

Now,

∵ c=kαβ

αβ=ck

After replacing the value of k=a from equation (i) we get

α β=ca ---------(v)

Thus, sum of zeroes

=α+β=-ba

=-Coefficient of xCoefficient of x2

And Product of zeroes

=αβ=ca=Constant termCoefficient of x2

NCERT Exercise 2.2 SolutionClass ten Mathematics

Question: 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) x2-2x-8

Solution:

Given,

x2-2x-8

After expanding middle term 2x, we get

=x2-4x+2x-8

[∵ 2x=-4x+2x]

=x(x-4)+2(x-4)

Now, after taking (x-4) as common, we get

=(x-4)(x+2)

Thus, the value of x2-2x-8 is zero, when x-4=0 or x+2=0

Thus,

When x-4=0

x=4

And, when x+2=0

x=-2

Therefore,

The zeroes of x2-2x-8 are 4 and -2. Answer

Verification of relationship between zeroes and coefficients.

Now, Sum of zeroes =4+(-2)=-(-21)  =-Coefficient of xCoefficient of  x2

And Product of zeroes =4×(-2)=-81  =Constant termCoefficient of  x2

(ii) 4s2-4s+1

Solution:

Given, 4s2-4s+1

=(2s)2- 2×2×s+1

=(2s-1)2

[∵ (a-b)2=a2-2ab+b2]

=(2s-1)(2s-1)

Thus, value of 4s2-4s+1 is equal to zero (0), when 2s-1=0

Therefore, when, 2s-1=0

2s=1

s=12

Thus, the zeroes of 4s2-4s+1 are 12 and 12

Verification:

Sum of zeroes =12+12=1=--44

=-Coefficient of sCoefficient of s2

Product of zeroes =12×12

=14=Constant termCoefficient of s2

(iii) 6x2-3-7x

Solution:

Given, 6x2-3-7x

=6x2-7x-3

After expanding middle term -7x we get

=6x2-9x+2x-3

[∵ -9x+2x=-7x]

=3x(2x-3)+1(2x-3)

After taking 2x+3 as common

=(2x-3)(3x+1)

Thus, value of 6x2-3-7x is equal to zero (0), when 2x-3=0 or 3x+1=0

Thus, when,

2x-3=0

2x=3x=32

And, when, 3x+1=0

3x=-1x=-13

Thus, zeroes of 6x2-3-7x are 32 and -13

Verification:

Now,

Sum of zeroes =32+(-13)

=9-76=76

=-(-7)6=-Coefficient of xCoefficient of x2

And, product of zeroes

=32×(-13)=-36

=Constant termCoefficient of x2

(iv) 4u2+8u

Solution:

Given, 4u2+8u

=4u(u+2)

Thus, the value of 4u2+8u is zero when, 4u=0 or u+2=0

Thus, when, 4u=0

u=0

And, when u+2=0

u=-2

Therefore, the zeroes of 4u2+8u are 0 and -2

Verification:

Now, Sum of zeroes =u+(-2)=-2

=-84=-Coefficient of uCoefficient of u2

And, product of zeroes =0×(-2)=0

=04=Constant termCoefficient of u2

(v) t2- 15

Solution:

Given, t2-15

=t2-(15)2

=(t+15)(t-15)

[∵ a2-b2=(a+b)(a-b)]

Thus, the value of t2-15 is equal to zero, when t-15=0 or t+15=0

Therefore, when t-15=0

t=15

And when, t+15=0

t=-15

Thus, zeroes of t2-15 are 15 and -15

Verification:

Now, sum of zeroes =15+(-15)=0

=-01=-Coefficient of tCoefficient of t2

And, product of zeroes =15×(-15)=-15

=-151=Constant termCoefficient of t2

(vi) 3x2-x-4

Solution:

Given, 3x2-x-4

By expanding middle term -x, we get

3x2+3x-4x-4

=3x(x+1)-4(x+1)

After taking (x+1) as common, we get

=(x+1)(3x-4)

Thus, the value of 3x2-x-4 is zero when x+1=0 or 3x-4=0

Thus, when, x+1=0

Therefore, x=-1

And when, 3x-4=0

Therefore, 3x=4x=43

Therefore, zeroes of 3x2-x-4 are -1 and 43

Verification:

Sum of zeroes

=-1+43=-3+43=13

=--13=-Coefficient of xCoefficient of x2

And, product of zeroes, =-1×34

=-43=Constant termCoefficient of x2

Question: 2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 14,-1

Solution:

Given, Sum and product of zeroes of polynomial are 14 and -1 respectively.

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

α+β=14=-ba

Thus, a=4 and b=-1

αβ=-1=-44=ca

Therefore, a=4,b=-1 and c=-4

Thus, after substituting the values of a,b and c in equation (i), we get

4x2-1×x-4

=4x2-x-4

Therefore, the quadratic polynomial for the given values, is 4x2-x-4 Answer

(ii) 2,13

Solution:

Given, the sum and product of the quadratic polynomial are 2, and 13

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

Product of zeroes

=αβ=13=ca

Therefore, c=1 and a=3

Sum of zeroes

=α+β=2=-ba

323=-ba

[∵ a=3]

Thus, a=3,b=-32 and c=1

After substituting the values of a,b and c in equation (i), we get

3x2-3x+1

Therefore, the quadratic polynomial for the given values, is 3x2-3x+1 Answer

(iii) 0,5

Solution:

Given, the sum and product of the quadratic polynomial are 0, and 5

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

Sum of zeroes

=α+β=0=01=-ba

And product of zeroes

=αβ=5=51=ca

Thus, a=1,b=-0 and c=5

After substituting the values of a,b and c in equation (i), we get

x2+(-0×x)+5

=x2+5

Therefore, the quadratic polynomial for the given values, is =x2+5 Answer

(iv) 1,1

Solution:

Given, the sum and product of the quadratic polynomial are 1, and 1

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

Sum of zeroes

=α+β=1=11=-ba

And, product of zeroes

=αβ=1=11=ca

Thus, a=1,b=-1 and c=1

After substituting the values of a,b and c in equation (i), we get

x2-x+1

Therefore, the quadratic polynomial for the given values, is x2-x+1 Answer.

(v) -14,14

Solution:

Given, the sum and product of the quadratic polynomial are -14, and 14

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

Sum of zeroes

=α+β=-14=-ba

And Product of zeroes,

=αβ=14=ca

Thus, a=4,b=1 and c=1

After substituting the values of a,b and c in equation (i), we get

4x2+x+1

Therefore, the quadratic polynomial for the given values, is 4x2+x+1 Answer.

(vi) 4,1

Solution:

Given, the sum and product of the quadratic polynomial are 4, and 1

Let, the polynomial be ax2+bx+c ------(i)

And its zeroes are α and β

Thus, according to question,

Sum of zeroes

=α+β=4=41=-ba

And product of zeroes,

=αβ=1=11=ca

Thus, a=1,b=-4 and c=1

After substituting the values of a,b and c in equation (i), we get

x2-4x+1

Therefore, the quadratic polynomial for the given values, is x2-4x+1 Answer.


Post a Comment

Previous Post Next Post