संख्या पद्धति

Welcome to Gurukul with Arya Gautam






संख्या पद्धति किसे कहते हैं

संख्याओं को लिखने और संख्याओं के नामकरण को व्यवस्थित करने की प्रक्रिया को संख्या पद्धति कहते हैं।

संख्या पद्धति में हम 0 से लेकर अनंत तक कि संख्याओं के बारे में पढ़ते और समझते हैं।

संख्या पद्धति में संख्याओं को कितने वर्गों में बाँटा गया हैं यह जानकारी समझकर संख्याओं का उपयोग करना सीखते हैं।

0, 1, 2, 3, 4, 5, 6, 7, 8, 9…….. अनंत तक की सभी संख्याओं को हम संख्या पद्धति कहते हैं।

संख्या पद्धति के प्रकार

संख्या पद्धति में संख्याएँ 12 प्रकार की होती हैं।

  1. प्राकृतिक संख्या → 1, 2, 3, 4, 5, ………
  2. सम संख्या → 2, 4, 6, 8, 10, ………
  3. विषम संख्या → 1, 3, 5, 7, 9, ………
  4. पूर्णांक संख्या → -3, -2, -1, 0, 1, 2, 3, ………
  5. पूर्ण संख्या → 0, 1, 2, 3, 4, ………
  6. भाज्य संख्या → 4, 6, 8, 9, ………
  7. अभाज्य संख्या → 2, 3, 5, 7, 11, ………
  8. सह अभाज्य संख्या → (5, 7) , (2, 3)
  9. परिमेय संख्या → √4, 7/5, 2/3, 3
  10. अपरिमेय संख्या → √5, √7, √11, √13
  11. वास्तविक संख्या → √4, √11, 4/7
  12. अवास्तविक संख्या → √-6, √-5, √-29

नीचे हम संख्याओं के 12 प्रकारों को विस्तार से पढ़ते एवं समझते हैं।

1. प्राकृतिक संख्या (Natural Number)

गिनती में उपयोग की जाने वाली प्रत्येक संख्याएँ प्राकृतिक संख्या कहलाती हैं।

जैसे:- 1, 2, 3, 4, 5, 6, 7, 8, 9……………अनंत

2. सम संख्या (Even Number)

ऐसी प्राकृतिक संख्याएँ जो 2 से पूर्णतः विभाजित हो जाती हैं सम संख्या कहलाती हैं।

जैसे:- 2, 4, 6, 8, 10, 12, 14, 16, 18, 20…….………अनंत

3. विषम संख्या (Odd Number)

ऐसी प्राकृतिक संख्याएँ जो 2 से पूर्णतः से विभाजित नहीं होती विषम संख्या कहलाती हैं।

जैसे:- 1, 3, 5, 7, 9, 11, ……………अनंत

4. पूर्णांक संख्या (Integer Number)

धनात्मक, ऋणात्मक और शून्य से मिलकर बनी हुई संख्याएँ पूर्णांक संख्या कहलाती हैं।

जैसे:- -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5……………..………अनंत

पूर्णांक संख्याएँ तीन प्रकार की होती हैं।

  • धनात्मक संख्या
  • ऋणात्मक संख्या
  • उदासीन पूर्णांक

(a). धनात्मक संख्याएँ:- एक से लेकर अनंत तक की सभी धनात्मक संख्याएँ धनात्मक पूर्णांक हैं।

(b). ऋणात्मक संख्याएँ:- 1 से लेकर अनंत तक कि सभी ऋणात्मक संख्याएँ त्रणात्मक पूर्णांक हैं।

(c). उदासीन पूर्णांक:- ऐसा पूर्णांक जिस पर धनात्मक और ऋणात्मक चिन्ह का कोई प्रवाह ना पढ़े तो यह जीरो होता हैं।

5. पूर्ण संख्या (Whole Number)

प्राकृतिक संख्या में जीरो को शामिल कर लेने पर यह पूर्ण संख्या बनती हैं।

जैसे:- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9……….………अनंत

6. भाज्य संख्या (Composite Number)

ऐसी प्राकृत संख्या जो स्वंय और 1 से विभाजित होने के अतिरिक्त कम से कम किसी एक अन्य संख्या से विभाजित हो उन्हें भाज्य संख्या कहते हैं।

जैसे:- 4, 6, 8, 9, 10, 12, 14, 16, 18, 20……..………अनंत

7. अभाज्य संख्या (Prime Number)

ऐसी प्राकृतिक संख्याएँ जो सिर्फ स्वंय से और 1 से विभाजित हो और किसी भी अन्य संख्या से विभाजित न हो उन्हें अभाज्य संख्या कहते हैं।

जैसे:- 2, 3, 5, 11, 13, 17, ………

8. सह अभाज्य संख्या (Co-prime Number)

कम से कम 2 अभाज्य संख्याओ का ऐसा समूह जिसका (HCF) 1 हो सह अभाज्य संख्या कहलाती हैं।

जैसे:- (5, 7), (2, 3)

9. परिमेय संख्या (Rational Number)

ऐसी सभी संख्याएँ जिन्हें p/q के रूप में लिखा जा सकता हैं। उन्हें परिमेय संख्या कहते है।

(q हर का मान जीरो नहीं होना चाहिए)

जैसे:- 3/4, 7/12, 17/19, √125, √625

10. अपरिमेय संख्या (Irrational Number)

ऐसी संख्याएँ जिन्हें p/q के रूप में नही लिखा जा सकता और मुख्यतः उन्हें (√) के अंदर लिखा जाता हैं। और कभी भी उनका पूर्ण वर्गमूल नहीं निकलता अपरिमेय संख्या कहते हैं।

जैसे:- √13, √17, √123, √217, √257, √567

नोट:- (π एक अपरिमेय संख्या हैं।)

11. वास्तविक संख्या (Real Number)

परिमेय और अपरिमेय संख्याओ को सम्मलित रूप से लिखने पर वास्तविक संख्या प्राप्त होती हैं।

जैसे:- 3/5, 7/11, 19/13, √121, √147, √973

12. अवास्तविक संख्या (Unreal Number)

यह एक काल्पनिक संख्या है जिसका वास्तविक नहीं होता हैं अवास्तविक संख्या या काल्पनिक संख्या को इकाई से दर्शाया जाता हैं।

जैसे:- √- 3, √-4, √-12, √-17, √-107 आदि।

संख्या पद्धति के सभी सूत्र

संख्याओं पर आधारित सूत्र

  • प्राकृतिक संख्याओं का योग = (पहली संख्या + अंतिम संख्या / 2) × n
  • N = (अंतिम संख्या – पहली संख्या / वर्ग अंतराल) +1
  • प्रथम n प्राकृत संख्याओं के वर्गों का योग = n(n+1)(2n+1)/6
  • प्रथम n प्राकृत संख्याओं के घनों का योग = [n(n+1)/2]²

अधिक जानकारी के लिए संख्या की पोस्ट पढ़िए।

भाग के सूत्र

  • भाज्य = (भाजक × भागफल) + शेषफल
  • भाज्य – शेषफल = भाजक × भागफल
  • भाज्य – शेषफल / भागफल = भाजक

अधिक जानकारी के लिए भाग की पोस्ट पढ़िए।

जानवरों की संख्या पर आधारित सूत्र

चार पैर वालों की संख्या = (पैर / 2) – सिर
दो पैर वालों की संख्या = सिर – चार पैर वालों की संख्या

इकाई के अंक पर आधारित महत्वपूर्ण बिंदु

इकाई के स्थान पर यदि 0 होगा तो इकाई का अंक 0 होगा।
इकाई के स्थान पर यदि 1 होगा तो इकाई का अंक 1 होगा।
इकाई के स्थान पर यदि 5 होगा तो इकाई का अंक 5 होगा।
इकाई के स्थान पर यदि 6 होगा तो इकाई का अंक 6 होगा।

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.